In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia.

نویسندگان

  • Melissa C Skala
  • Kristin M Riching
  • Damian K Bird
  • Annette Gendron-Fitzpatrick
  • Jens Eickhoff
  • Kevin W Eliceiri
  • Patricia J Keely
  • Nirmala Ramanujam
چکیده

Multiphoton fluorescence lifetime imaging microscopy (FLIM) is a noninvasive, cellular resolution, 3-D functional imaging technique. We investigate the potential for in vivo precancer diagnosis with metabolic imaging via multiphoton FLIM of the endogenous metabolic cofactor nicotinamide adenine dinucleotide (NADH). The dimethylbenz[alpha]anthracene (DMBA)-treated hamster cheek pouch model of oral carcinogenesis and MCF10A cell monolayers are imaged using multiphoton FLIM at 780-nm excitation. The cytoplasm of normal hamster cheek pouch epithelial cells has short (0.29+/-0.03 ns) and long lifetime components (2.03+/-0.06 ns), attributed to free and protein-bound NADH, respectively. Low-grade precancers (mild to moderate dysplasia) and high-grade precancers (severe dysplasia and carcinoma in situ) are discriminated from normal tissues by their decreased protein-bound NADH lifetime (p<0.05). Inhibition of cellular glycolysis and oxidative phosphorylation in cell monolayers produces an increase and decrease, respectively, in the protein-bound NADH lifetime (p<0.05). Results indicate that the decrease in protein-bound NADH lifetime with dysplasia is due to a shift from oxidative phosphorylation to glycolysis, consistent with the predictions of neoplastic metabolism. We demonstrate that multiphoton FLIM is a powerful tool for the noninvasive characterization and detection of epithelial precancers in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.

Metabolic imaging of the relative amounts of reduced NADH and FAD and the microenvironment of these metabolic electron carriers can be used to noninvasively monitor changes in metabolism, which is one of the hallmarks of carcinogenesis. This study combines cellular redox ratio, NADH and FAD lifetime, and subcellular morphology imaging in three dimensions to identify intrinsic sources of metabol...

متن کامل

Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH.

Biochemical estimation of NADH concentration is a useful method for monitoring cellular metabolism, because the NADH/NAD+ reduction-oxidation pair is crucial for electron transfer in the mitochondrial electron chain. In this article, we present a novel method for deriving functional maps of intracellular reduction-oxidation ratio in vivo via measurement of the fluorescence lifetimes and the rat...

متن کامل

Quantification of the Metabolic State in Cell-Model of Parkinson’s Disease by Fluorescence Lifetime Imaging Microscopy

Intracellular endogenous fluorescent co-enzymes, reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), play a pivotal role in cellular metabolism; quantitative assessment of their presence in living cells can be exploited to monitor cellular energetics in Parkinson's disease (PD), a neurodegenerative disorder. Here, we applied two-photon fluorescence lifetime i...

متن کامل

Reduced nicotinamide adenine dinucleotide fluorescence lifetime separates human mesenchymal stem cells from differentiated progenies.

The metabolic changes of human mesenchymal stem cells (hMSCs) during osteogenic differentiation were accessed by reduced nicotinamide adenine dinucleotide (NADH) fluorescence lifetime. An increase in mean fluorescence lifetime and decrease in the ratio between free NADH and protein-bound NADH correlated with our previously reported increase in the adenosine triphosphate (ATP) level of hMSCs dur...

متن کامل

Nonlinear optical imaging of cellular processes in breast cancer.

Nonlinear optical imaging techniques such as multiphoton and second harmonic generation (SHG) microscopy used in conjunction with novel signal analysis techniques such as spectroscopic and fluorescence excited state lifetime detection have begun to be used widely for biological studies. This is largely due to their promise to noninvasively monitor the intracellular processes of a cell together ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2007